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Abstract 

In the reliability-based design optimization (RBDO) process, surrogate models are frequently used to reduce the 

number of simulations because analysis of a simulation model takes a great deal of computational time.  On the 

other hand, to obtain accurate surrogate models, we have to limit the dimension of the RBDO problem and thus 

mitigate the curse of dimensionality.  Therefore, it is desirable to develop an efficient and effective variable 

screening method for reduction of the dimension of the RBDO problem.  In this paper, requirements of the variable 

screening method for deterministic design optimization (DDO) and RBDO are compared, and it is found that output 

variance is critical for identifying important variables in the RBDO process.  An efficient approximation method 

based on the univariate dimension reduction method (DRM) is proposed to calculate output variance efficiently.  For 

variable screening, the variables that induce larger output variances are selected as important variables.  To 

determine important variables, hypothesis testing is used in this paper so that possible errors are contained in a user-

specified error level.  Also, an appropriate number of samples is proposed for calculating the output variance.  

Moreover, a quadratic interpolation method is studied in detail to calculate output variance efficiently.  Using 

numerical examples, performance of the proposed method is verified.  It is shown that the proposed method finds 

important variables efficiently and effectively. 

 

Keywords: Variable Screening, RBDO, Surrogate Model, Output Variance, 1-D Surrogate Model, Partial Output 

Variance, Hypothesis Testing, Univariate Dimension Reduction Method 

 

 

1. Introduction 

The variable screening method is a useful method in the design optimization process because it can select 

essential design variables for accurate surrogate models and effective design optimization.  In the formulation of a 

design optimization problem, a set of design variables that describe the system need to be identified [1].  Design 

variables are selected to be independent of each other as much as possible in the design space.  The number of 
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independent design variables is known as the degrees of freedom, and this is the dimensionality of the optimization 

problem.  To obtain an appropriate optimum design, a minimum number of design variables is required.  For this 

reason, it is better to identify as many design variables as possible and then fix some of the variables at certain 

values according to the variable screening result.  The variable screening method can play a key role, especially in 

reliability-based design optimization (RBDO), because the RBDO process requires a larger number of analyses than 

the deterministic design optimization (DDO) process due to reliability analyses and the design sensitivities of 

probabilities of failure.  To this end, surrogate models are usually used to reduce the number of analyses required in 

RBDO.  Various surrogate model methods such as the radial basis function (RBF), polynomial response surface 

(PRS), support vector regression (SVR), Kriging, and dynamic Kriging (DKG) methods have been developed [2-10].  

However, even for the surrogate model, the number of design variables becomes a critical factor because surrogate 

model generation is difficult for high-dimensional problems, due to the curse of dimensionality. 

Variable screening methods have been developed in various disciplines.  In statistics, important variables were 

found to create an accurate surrogate model of computer simulation using the maximum likelihood estimator (MLE) 

of correlation parameters of the Gaussian process for a deterministic problem [11].  Using a regression model, 

essential variables among candidate variables were efficiently identified based on data [12, 13].  Especially in 

statistical learning theory, various feature selection methods have been developed to choose a reduced number of 

input variables to represent an output effectively [14].  In addition, methods such as manifold learning have been 

used to preserve input information in reduced dimension for efficient statistical analysis [15].  In physics, a variable 

screening model was developed for the quasi-molecular treatment of ion-atom collision [16].  In engineering, a 

confidence interval of the coefficient of a linear surrogate model was proposed to detect key variables for a car crash 

DDO problem [17].  A sampling-based sensitivity measure using a small amount of data was introduced to rank the 

importance of variables and was applied to long-term performance of a geologic repository for high-level 

radioactive waste [18].  Moreover, the design sensitivity method can be extended to the variable screening method 

because vital variables have larger design sensitivity.  In the deterministic problem, the design sensitivity, which 

shows the rate of change in the performance measure at the design point, can be obtained using various methods [19, 

20] and is called local sensitivity analysis (LSA) [21, 22].  For a reliability problem, the variability of the input 

random variable should be incorporated to assess the design sensitivity of a probabilistic constraint.  The design 

sensitivity of the probabilistic constraint using the first-order reliability method (FORM) [23-25], dimension 

reduction method (DRM) [26, 27], and sampling-based stochastic sensitivity [28, 29], could be used to identify 

important design variables.  In addition, global sensitivity analysis (GSA), such as correlation ratio [30], global 

sensitivity indices [31], and analytical GSA methods [22], can be used for variable screening as well [32]. 

However, previous works may have limitations to being directly applied to RBDO with surrogate models.  If a 

method depends entirely on existing data [12-15], it may not be possible to carry out RBDO because design 

variables change during the optimization process.  Finding input variables from among all the variables that may be 

irrelevant to an output to well represent the output from data [14] is not an issue from the RBDO perspective.  The 

relationship and relative input variables are already known through the computer aided engineering (CAE) such as 

the finite element method (FEM) or computational fluid dynamics (CFD).  A method using CAE to find variables 
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which significantly affect output reliability is more interesting.  Moreover, capturing the input information in 

reduced variables [15] is not an issue with RBDO, either; how much output uncertainty is affected by the input 

variables is the main interest.  A method developed for a specific problem [16] will be inadequate for broad 

applications.  Variable screening and design sensitivity methods for a deterministic problem [11, 17, 19, 20] may not 

be applicable for RBDO because input randomness is not considered.  Methods that require a very large number of 

analyses [30, 31] could be ineffective for RBDO of computationally demanding problems and could become 

unstable when sufficient numbers of analyses are not provided [18].  The design sensitivity of the probabilistic 

constraint using FORM or DRM [23-27] requires searching for the most probable point (MPP), which may be very 

difficult to obtain for a large-dimensional problem.  If a method was developed based on the assumption that 

accurate full-dimensional surrogate models are available a priori [22, 28, 29], RBDO could be carried out using the 

surrogate models because it can provide accurate response and sensitivity of the problem, unless the optimization 

algorithm has a limitation on the number of design variables, which is not common.  From the previous works, key 

desirable properties of a variable screening method for RBDO with a surrogate model were found: it should (1) be 

efficient, (2) consider input randomness, (3) not require a full-dimensional surrogate model, and (4) be applicable to 

broader problems.  

Therefore, the objective of this paper is to develop a variable screening method that can satisfy the above 

desirable properties.  The reliability analysis in RBDO captures the output variability induced by the input 

variability and the sensitivity of the performance function.  The variable that induces larger output variability is 

important in the RBDO process.  In this paper, a partial output variance, which is the output variance when one 

design variable has variability while others are fixed at their mean, is used to find important design variables [33].  

The partial output variance is simple to calculate and requires a 1-D surrogate model for each design variable.  The 

method introduced in this paper has strengths and weaknesses.  Its main strength is its efficiency and practical 

applicability.  Its weakness is accuracy; the interactions between the design variables are not fully captured.  

However, practical applicability is the focus in this paper because it is very important for large-scale problems.  In 

the following sections, the proposed method will be explained in detail, and its strengths and weaknesses will be 

fully discussed.  To demonstrate the effectiveness of the proposed method, analytical examples and a large-scale 

industrial problem are used. 

 

2. Variable Screening 

As explained in the introduction, screening out variables means finding important variables among all random 

variables.  Here, the word “important” could have different meanings depending on the problem we are dealing with.  

In the following two sections, the difference between variable screening for DDO and RBDO will be explained.  

Based on the difference, the required properties of variable screening for RBDO will be introduced. 

 

2.1  Variable Screening for DDO 

A DDO problem can be formulated as 

 minimize  cost(d) 
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 subject to     
( ) 0, 1,...,

,
j

L U NDV

G j NC≤ =

≤ ≤ ∈

d

d d d d R
 (1) 

where d, Gj, NC, and NDV are the design variable vector, jth constraint function, number of constraints, and number 

of design variables, respectively. 
As stated before, in the DDO problem, the input design variables do not have uncertainty, and thus the design 

sensitivity can be used as a barometer to determine the importance ranking of design variables with respect to the 

performance measure.  The question is: “Where should the importance ranking of design variables be determined?” 

or “Where should the design sensitivity be calculated?” 

The LSA calculates the design sensitivity at a given design point [21, 22].  Usually, LSA is used to provide the 

direction of design movement in the optimization process.  For variable screening, LSA can provide the importance 

ranking of design variables at the current design point.  However, the importance ranking at the given design point 

could be different from the ranking at other design points if the performance measure is a nonlinear function of 

design variables.  On the other hand, GSA is used to calculate overall design sensitivity on the entire design domain.  

The GSA is like averaged design sensitivity in the design domain.  As it is an average, the importance ranking using 

GSA could mislead at specific points or even regions.  Hence, LSA and GSA have advantages and disadvantages for 

variable screening [21]. 

 

2.2  Variable Screening for RBDO 

A general RBDO problem can be formulated as 

 minimize cost (d) 

 subject to     
[ ( ) 0] 1,...,

, , and

= > ≤ =

≤ ≤ ∈ ∈
j j

Tar
F j F

L U NDV NRV

P P G P j NCX

d d d d XR R
 (2) 

where d, Gj, ,
j

Tar
FP  NC, NDV, and NRV are the design variable vector, jth constraint function, jth target probability of 

failure, number of constraints, number of design variables, and number of random variables, respectively. 

In the RBDO process, design variable vector d is the mean vector of the corresponding random variable X.  

Though the design variable d is deterministic, the design sensitivity for RBDO should consider the randomness of X 

because the constraints are based on the probabilistic performance measure P[Gj(X)>0] as shown in Eq. (2).  

Therefore, the design sensitivity of the performance measure alone cannot be used as a barometer.  The design 

sensitivity of the probabilistic performance measure can be obtained by using several methods, such as FORM [23-

25], DRM [26, 27], and sampling-based stochastic sensitivity [28, 29].  The design sensitivity of the probabilistic 

performance measure can be used for variable screening.  The design sensitivities by those methods are LSA 

because they provide different sensitivities at different designs.  The GSA method is also applicable for variable 

screening in RBDO problems as it is in DDO problems.  Again, both LSA and GSA methods have advantages and 

disadvantages. 

The random parameters will not increase the dimensionality of the optimization problem because they are not 

random design variables.  However, the surrogate model that includes random parameters is still required because 
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they affect the output distribution.  The main objective of this paper is to select important design variables so that 

accurate surrogate models can be generated and, at the same time, an appropriate optimum design (i.e., not 

suboptimum) can be obtained in the RBDO process.  Hence, once variable screening is done, the screened-out 

random design variables need to be fixed, not to be a random parameter.  However, fixing a random variable as a 

deterministic variable will reduce the total output variability. 

Consider a simple example: 

  2~ (5,3 ),      1,2, ... ,10iX N i =  

  ( )( )10 2

1
~ 50, 3 10i

i
Y X N

=

= ∑  (3) 

If the probabilistic performance measure is P[Y > 60], then the reliability analysis result is 

  [ ] 60 5060 1 0.1459
3 10

P Y − 
> = − Φ = 

 
 (4) 

However, if one dimension is reduced by screening out X10 = µ10 = 5 while the other variables remain random, then 

the probabilistic performance measure changes to 

  
9

2

1
5 ~ (50,9 )i

i
Y X N

=

= +∑  (5) 

As a consequence, the reliability analysis result yields 

  60 5060 1 0.1333
9

P Y −  > = − Φ =    
  (6) 

From Eqs. (4) and (6), 0.0126 (1.26%) of the output variability is decreased by screening out one variable.  A more 

fundamental problem is that the lost amount 1.26% cannot be estimated without the full-dimensional reliability 

analysis result of Eq. (4).  On the other hand, let’s assume that X10 has a smaller variance of one.  Then, the full-

dimensional reliability analysis yields 

  60 50( 60) 1 0.1347
82

P Y − 
> = − Φ = 

 
 (7) 

From Eqs. (6) and (7), the difference is 0.0014 (0.14%), which could be acceptable.  Therefore, in this case, X10 

could be fixed at the mean value.  As shown in the example, the output variability decreases if any random variable 

is fixed at a deterministic value.  However, there are some variables that affect the output variability a small amount.  

The variable screening method for effective surrogate models for RBDO is to find those variables that have small 

effects on the output variability.  It is noted that the random parameters are considered as much as the random design 

variables in this paper.  Even though the random parameters are not changing during the RBDO process, they will 

influence the output variability.  Hence they should be considered in the variable screening process, so that 

reliability of the performance measure can be accurately approximated using reduced dimension. 

 

3. Variable Screening with 1-D Surrogate Model 

The probability of failure cannot be solely determined by the output variability.  To obtain accurate probability 

of failure, the output distribution is needed, that is, all statistical information of the output is required.  However, 
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even though an input distribution is known, it is very difficult to obtain complete output distribution since the 

performance measure could be implicit, a non-linear function, or even both.  For example, for a given normal input 

distribution, the output distribution could be bimodal as well as asymmetric.  Consequently, it is impractical to select 

a reduced number of input variables based solely on probability of failure.  As discussed in previous sections, a 

screened-out variable will be fixed at its mean value.  Then the change of output mean will be minimized.  As a 

result, the output variability becomes the measure that can determine a probability of failure.  Of course, other 

statistical moments or parameters, such as skewness and kurtosis, could affect probability of failure.  However, 

either of these statistical moments cannot be a measure by itself.  For example, a variable that induces larger (or 

smaller) output skewness may not be an important variable, but it could be an important variable when it induces 

larger (or smaller) output skewness and very similar output variability.  We could consider a combination of the 

moments as a measure, but there are too many possible combinations to consider.  Hence, under the assumption that 

the output mean is similar, the output variability is chosen as the measure to select vital variables for RBDO in this 

paper. 

The output variability can be quantified by the output variance as shown in the previous section.  The exact 

output variance of a nonlinear implicit performance measure is very difficult to obtain.  Hence, an approximated 

output variance is used in this paper.  In the following sections, the output variance is decomposed into partial output 

variances, which are the output variances when each input variable is random and the others are fixed at their mean 

values.  Then, a method to find the design variables that have a large impact on output variance is developed using a 

hypothesis testing. 

 

3.1 Approximated Output Variance 

A univariate DRM is a well-known approximation method for statistical moments using multiple 1-D 

integrations [34].  Consider a performance measure Y and its realization y subject to random input vector 

X={X1,…,XN}T: 

  1 1( ) ( , , ), ( ) ( , , )N NY Y X X y y x x= =X x   (8) 

Define a function Yi, which is the performance measure when Xi is random and other variables are fixed at their 

mean values, as 

 1 1 1( , , , , , , )i i i i NY Y Xµ µ µ µ− +=    (9) 

The realization of the performance measure at the input mean point µX is defined as 

 0 ( )y y= Xμ  (10) 

The lth statistical moment of Y, which is approximated using the univariate DRM, is defined as [34] 

 0( 1)
l

l i
i

m E Y N y
  ≅ − −  
   
∑  (11) 

Then, the output variance 2
Yσ  can be approximated as 

 2 2 2
2 1 2

i i j i jY Y Y Y Y Y
i i j

m mσ σ ρ σ σ
>

≅ − = +∑ ∑  (12) 
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where 2
iYσ  is the variance of Eq. (9), which is the partial output variance when only Xi is random, and

i jY Yρ is the 

correlation coefficient between Yi and Yj.  As shown in Eq. (12), the partial output variances 2
iYσ  are the main 

variables for approximating the output variance 2
Yσ .  When 2

iYσ  is larger than other partial output variances, it takes 

the largest portion in the output variance 2
Yσ .  Therefore, if some Xi produces larger partial output variance than 

others, then Xi should be selected as an important variable.  It is noted that calculation of 2
iYσ  requires only 1-D 

integration, and thus only 1-D surrogate models are required. 

Statistical correlation between Xi and Xj yields the term of 
i j i jY Y Y Yρ σ σ in Eq. (12) and affects the output variance.  

When Xi and Xj are strongly correlated, one could be replaced by the other.  To calculate the term 
i j i jY Y Y Yρ σ σ , a two-

dimensional surrogate model is required.  If there are only a few correlation pairs, calculating the correlation term 

could be affordable.  However, with a practical point of view, the partial output variance 2
iYσ  is the focus in this 

paper.  As we are looking for important variables, not the value of the output variance of 2
Yσ , the partial output 

variance would be enough for variable screening.  In Fig. 1, contours of independent, positively correlated (ρ = 0.8) 

and negatively correlated (ρ = −0.8) probability density functions are shown.  Correlation determines how the 

random variables are distributed inside the box (dotted line), whereas the size of the box is determined by variances 

of X1 and X2.  It can be seen that the primary effect on output variance is the box size, and then distribution inside 

the box follows.  Consequently, to perform variable screening efficiently, the first thing we need to consider is the 

box size, not the distribution of random variables inside the box.  Hence, the correlation term is not considered in 

this paper for efficiency and practicality.  It is noted that the statistical correlation between Xi and Xj will be 

considered in reduced-dimensional RBDO if both variables are selected. 

 
Figure 1.  Effect of Variance and Correlation of Input Random Variables 
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The partial output variance of 2
iYσ  is like LSA because it can have different values at different input mean points 

Xμ , which is the current design point in the RBDO process.  Hence, the variable screening result could be changed 

as the design point changes.  There are several recommended points at which to perform variable screening using 

LSA.  The first one is the DDO optimum.  As the DDO optimum is usually close to the RBDO optimum, the 

variable screening result at the DDO optimum is likely to be similar to the result at the RBDO optimum.  Also, the 

design point where most of the deterministic constraints are active can be a good candidate point.  It is noted that 

DDO or the design point where the constraints are active could be obtained using the finite difference method in a 

practical engineering problem.  Also, DDO could be achieved using the sensitivity obtained from a 1-D surrogate 

model because DDO requires only the deterministic LSA, which is 1-D. 

 

3.2 Variable Screening Using Hypothesis Testing 

Using the 1-D surrogate model, the partial output variance 2
iYσ  can be calculated approximately as 

 { }22 ( )
1

1

1 ( , , , , )
1i

ns
j

Y i i N i
j

s y x y
ns

µ µ
=

= −
− ∑    (13) 

where ( )j
ix  is the jth realization of the input random variable Xi, ns is the number of samples, and iy  is the mean of yi 

as, 

  ( )
1

1

1 ( , , , , )
ns

j
i i i N

j
y y x

ns
µ µ

=

= ∑    (14) 

As explained in previous sections, the partial output variance 2
iYs  can be used to determine important design 

variables.  To make the variable screening procedure systematic, hypothesis testing is applied in this paper.  

Hypothesis testing can prevent undesirable choices that could occur during the decision-making procedure.  

Calculated partial output variance 2
iYs  depends on the number of samples ns.  When ns is large enough, the variable 

screening result will be accurate.  However, it would require a large computational time.  Also, it is hard to 

determine what value of ns is large enough.  When ns is small, it will include statistical error.  If calculated 2
iYs  are 

distinctive from each other or with respect to the screening threshold value, then the effect of ns may not be 

significant.  However, ns could cause an error when some 2
iYs  are similar to each other or are near the screening 

threshold value.  Hypothesis testing can prevent this problem in a statistical manner by letting users control the error 

level.  

Various hypothesis testing methods have been developed for the decision-making problem [35].  Among those 

methods, we need the one that is not sensitive to distribution type because the distribution type of Yi or 2
iYs  is not 

known in general.  The one-sample t-test is developed based on the central limit theorem, which states that the 

sample mean of non-normal distribution follows normal distribution approximately for a large number of samples.  
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The one-sample t-test is not sensitive to underlying distribution types, so it is used in this paper.  As the t-test is a 

method for sample mean, 2
iYs  is calculated nr times for its statistical moments as 

  2( )

1

1
i

nr
k

i Y
k

v s
nr =

= ∑  (15) 

  2 2( ) 2

1

1 ( )
1i i

nr
k

v Y i
k

s s v
nr =

= −
− ∑  (16) 

where 2( )
i

k
Ys  is the kth repetition of 2

iYs and nr is the number of repetitions.  Now, the hypothesis is constructed: 

  0 0 1 0: versus :i iH v H vµ µ≤ >  (17) 

where µ0 is the criterion of hypothesis testing.  According to Eq. (17), the design variable that corresponds to iv , 

which is greater than µ0 (H1 is true), will be selected as an important variable.  Using the one-sample t-test, the 

hypothesis can be tested by checking the following statement:  

  Reject H0 in favor of H1 if 1,1nrq t α− −≥
 

(18) 

where α is the significance level,  1,nrt − •  is 1
1( )nrt−

−  , and the test statistics q is defined as

   

  

( )0
i

i

s
q

nr
νν µ≡ −

 
(19) 

In Eqs. (15) and (16), the uncertainty induced by ns is transferred to nr.  Hence, ns can be a fixed number, 

whereas nr should be decided appropriately.  Also, µ0 needs to be identified in Eq. (17).  µ0 is the key criterion that 

decides important variables, and it should be a value relative to iv  because the relative difference of partial output 

variances should be checked for variable screening.  At the same time, µ0 needs to be statistically independent from 

iv  for reasonable hypothesis testing.  In this paper, preliminary testing is proposed to obtain reasonable nr and µ0 as 

follows.  First, choose nr0, which is large enough so that the central limit theorem holds.  Then, calculate the initial 

statistical moments of 2
iYs  as 

  
0

(0) 2( )

10

1
i

nr
k

i Y
k

v s
nr =

= ∑  (20) 

  
0

2(0) 2( ) (0) 2

10

1 ( )
1i i

nr
k

v Y i
k

s s v
nr =

= −
− ∑  (21) 

Using the value from Eq. (20), the testing criterion µ0 relative to iv  can be calculated as 

  

(0)
0

1

N

i
iN

γµ ν
=

= ∑
 

(22) 

where γ is a constant that the user selects.  nr is calculated by limiting type II error (H0 is accepted when H1 is true) 

at the level of false negative rate β as [35] 

  

0 0

2
1,1 1,1

0(0)
0

( )
max ,iv nr nr

i

s t t
nr nr

v
α β

µ
− − − − +

=   −   
(23) 
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In Eq. (23), 1,nrt − •  should be used instead of 
0 1,nrt − •  for accurate calculation of nr.  However, Eq. (23) requires the 

value of nr on the right side to calculate nr.  To avoid this problem, 
0 1,nrt − •  is used instead, and 

0 1,nrt − •  produces a 

conservative result as it is larger than 1,nrt − • because nr is larger than nr0 in Eq. (23) and α is small.  Finally, nr and 

µ0 are determined so that the proposed hypothesis testing can be utilized. 

 

3.3 1-D Surrogate Model 

In previous sections, the 1-D surrogate model is treated as the given one because it is not difficult to generate.  

However, efficiently creating a 1-D surrogate model could be an issue.  For efficiency, quadratic interpolation is 

proposed as a basic 1-D surrogate model in this paper.  Quadratic interpolation may not be an adequate method for 

creating a surrogate model for a highly nonlinear performance measure.  However, a nonlinear performance measure 

can be effectively approximated by a quadratic function on a small region.  If X follows normal distribution, the 

domain of X is (−∞, ∞), whereas 99.73% of X is in (µX −3σX, µX +3σX), which is much smaller than the infinite 

domain.  Even if X does not follow normal distribution, the region (µX −3σX, µX +3σX) can cover almost all 

(approximately 98%) of X.  In view of the fact that this paper is focused on calculation of partial output variance, the 

region (µX −3σX, µX +3σX) is large enough.  Hence, the 1-D surrogate model needs to be accurate in the region (µX 

−3σX, µX +3σX) so that quadratic interpolation could be an appropriate method to approximate the performance 

measure in the region.    

Quadratic interpolation requires three samples, and the location of samples affects the accuracy of interpolation.  

The location of samples determined using the Chebyshev polynomial is known to give uniform error in the domain 

[36].  Because only the region (µX −3σX, µX +3σX) is of interest, the location of samples is determined as x1 =µX 

−2.5981σX, x2 =µX and x3 =µX +2.5981σX using the Chebyshev polynomial.  Since a random variable X may not be 

evenly distributed in its domain, providing uniform error does not necessarily mean that the calculated partial output 

variance is accurate.  However, since no unique location of samples is best for accurate partial output variance, the 

sample location by the Chebyshev polynomial is used in this paper due to the fact that it yields reasonable results for 

various distribution types of the random variable X.  If the random variable X has a closed and bounded domain like 

[a, b], the domain can be directly used for calculation of partial output variance, and the location of samples are  

x1 = 0.93301a + 0.06699b, x2 = (a + b)/2 and x3 = 0.06699a + 0.93301b, using Chebyshev polynomials. 

To check the performance of a selected location of samples, a nonlinear performance measure Y is used as 

 

 2( ) 0.3 sin(16 /15 0.7) sin (16 /15 0.7)Y X X X= + − + −  (24) 

 

Assuming that random variable X follows N(0.5, 0.3332), three locations of samples are chosen to compare the 

accuracy of the partial output variance.  The first location is {0.167, 0.5, 0.833}, which is µX and µX ±σX, and the 

second location is from the Chebyshev polynomial as {−0.365, 0.5, 1.365}.  The third location is wider, as {−0.667, 

0.5, 1.667}, which is µX and µX ±3.5σX.  Partial output variances are calculated using 100,000 realizations of X, and 
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true partial output variance is calculated by Eq. (24) with the same realizations.  To check the accuracy of the 

quadratic interpolation itself, mean square error (MSE) is calculated in the region of (−0.5, 1.5), which is (µX −3σX, 

µX +3σX) with 100 uniformly distributed points.  The calculated result is shown in Table 1, and the shape of 

quadratic interpolations is shown in Fig. 2, where asterisk marks (*) represent the sample point.  As shown in Table 

1, the location of the sample using Chebyshev polynomials produces more accurate partial output variance 

compared to the true one and less MSE than the other cases. 

 

 

Table 1.  Quadratic Interpolation with Different Sample Locations 

 Quadratic interpolation 
True 

Location of samples {0.167, 0.5, 0.833} {−0.365, 0.5, 1.365} {−0.667, 0.5, 1.667} 
Partial 
output 

variance 

Value 8.74E−02 7.84E−02 6.92E−02 7.84E−02 

Accuracy 111.5% 100.0% 88.3% 100.00% 

MSE 1.17E−02 1.19E−03 9.00E−03 0 
 

 
(a) Location of sample: {0.167, 0.5, 0.833} 
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(b) Location of sample: {−0.365, 0.5, 1.365} 

 

 
(c) Location of sample: {−0.667, 0.5, 1.667} 

 

Figure 2.  Quadratic Interpolation of Y with Different Locations of Samples 

 

This example cannot represent all performance measures.  When a highly nonlinear performance measure is 

expected, more sophisticated surrogate methods, such as the RBF, PRS, SVR, Kriging, and DKG [2-10] methods, 

are better.  In any case, it is recommended to sample inside the region of (µX −3σX, µX +3σX) for the random variable 

X if the distribution has an infinite domain. 

 

4. Numerical Examples 

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

X

Y

 

 
Quad. Interpolation
True

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

X

Y

 

 
Quad. Interpolation
True



13 

Analytical examples and an engineering example are used to test the performance of the proposed variable 

screening method.  Partial output variances are calculated to select important variables using the 1-D quadratic 

interpolation presented in Section 3.3.  To use the variable screening method, five parameters: significance level α, 

false negative rate β, number of sample ns, initial number of repetition nr0 and control parameter γ for threshold 

value, need to be decided by users.  Smaller α and β are better choices because they result in less statistical errors in 

the variable screening method.  However, when they are too small, very large nr could be required to maintain the 

error level specified by α and β in Eq. (23).  Hence, 0.025 to 0.05 would be a reasonable choice for them.  For nr0 

and ns, a small number could be chosen to reduce computational cost.  However, a small value of nr0 and ns will 

rapidly increase nr to maintain the error level.  Hence, an appropriately large number should be used; they are set to 

be 50 or 100 in the numerical examples.  The parameter γ in Eq. (22) is for user control of the threshold value that 

determines important variables.  In the numerical example, γ is initially set to 1.0, and the variable screening 

procedure is performed.  Then, the ratio of the sum of partial output variances of selected variables to that of all 

random variables, which is an estimation of the captured output variance, is checked.  If the ratio is less than 85%, γ 

is lowered to achieve 85%.  As explained before, the partial output variance is an approximation method, which is 

why the ratio of 85% may not mean that 85% of total output variance is actually captured in the selected variables.  

However, it would be a good estimation with affordable cost because it does not require many design of experiments 

(DoE) samples or full-dimensional surrogate models. 

 

4.1 Analytical Examples 

Hartmann 6-D and Dixon-Price 12-D are well-known analytical functions.  They are high-dimensional as well 

as nonlinear, so they are tested for the variable screening method.  Constant terms are added to the original functions 

to make both functions active (i.e. G(X) = 0) at the mean point of the input random variables.  Note that adding a 

constant term does not change the character of the functions.  Input random variables have a variety of marginal 

distribution types and copula types, so the analytical examples can reveal the effects of different distribution types 

and correlations. 

The functions are tested with three different methods.  The first is the variable screening method.  As mentioned 

before, parameters of α = β = 0.025, nr0 = ns = 100 and γ = 1.0, and 1-D surrogate model with quadratic 

interpolation are used.  γ is initially set to 1.0 and lowered when necessary.  The second is screening with accurate 

partial output variances using the analytical functions directly and 1,000,000 realizations of random variables.  The 

calculated partial output variances are used as reference.  When a performance measure is a linear function (G = 

ΣαiXi) of the input random variables Xi’s, the output variance is 2 2
ii Xα σΣ , where  is variance Xi.  Hence, the 

partial output variance can be linearly approximated as 2 2
ii Xα σ  with a design sensitivity (gradient) αi and the input 

variance .  Furthermore, an important variable might be selected based on the partial output variances calculated 

with the sensitivity-variance method, and it is applied to the analytic functions for comparison. 

 

4.1.1 Hartmann 6-D 
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The first analytical example is the Hartmann 6-D, and a constant term is added as explained before.  The 

analytical expression is shown as [37] 

  2

1 1
( ) exp ( ) 3.3082

q m

i ij j ij
i j

G a b X d
= =

 
= − − − + 

 
∑ ∑X   (25) 

where 0 ≤ Xi ≤ 1, m = 6, q = 4 and 

  [ ]1.0 1.2 3.0 3.2=a  (26) 

  

10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

 
 
 =
 
 
 

b    (27) 

  

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 
 
 =
 
 
 

d   (28) 

 

Information about input random variables is listed in Table 2.  Input random variables have four different marginal 

distribution types: normal, lognormal, gamma, and Weibull.  X5 and X6 are correlated with the Clayton copula and 

Kendall’s tau of 0.5. 

 

Table 2.  Input Random Variables for Hartmann 6-D Example 

 

 

The result of variable screening is shown in Table 3.  The design sensitivity (gradient) of the Hartmann 6-D in 

Eq. (25) at the input mean point is shown in the second column, and the third through fifth columns show partial 

output variances using the sensitivity-variance method, the variable screening method, and the accurate method, 

respectively.  As the variable screening method calculates partial output variances nr times, the result is the mean 

value of the calculated partial output variances.  In each method, important variables are marked with bold font.  It 

can be seen that the variable screening method finds the same variables as the accurate method, whereas the 

sensitivity-variance method misses X4 and X5.  The sixth and seventh columns are the ratios of partial output 

variances using the sensitivity-variance method and the variable screening method to the accurate partial output 

variances, respectively.  It is evident that the sensitivity-variance method cannot estimate the partial output variances 

accurately, while the variable screening method does.  Overall, the variable-screening method outperforms the 

Random 
Variable 

Distribution 
Type Mean STDEV Correlation 

(Copula) 
X1 Normal 0.20 0.009 - 
X2 Lognormal 0.15 0.007 - 
X3 Gamma 0.48 0.015 - 
X4 Weibull 0.28 0.014 - 
X5 Normal 0.31 0.014 Clayton 
X6 Weibull 0.68 0.013 τ = 0.5 
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sensitivity-variance method.  Hence, it is better to use at least quadratic approximation for the 1-D surrogate model 

to calculate partial output variances. 

 

Table 3.  Partial Output Variances of Hartman 6-D Example 

Random 
Variable 

Design 
Sensitivity 

Sensitivity 
-Variance 

Variable 
Screening Accurate Sens.-Var. 

/Accurate 
Variable Scr. 

/Accurate 
X1 −5.88E−02 2.80E−07 2.24E−06 2.25E−06 12.4% 99.6% 
X2 −1.36E−02 9.04E−09 6.12E−07 6.17E−07 1.5% 99.2% 
X3 7.15E−02 1.15E−06 1.11E−05 1.07E−05 10.7% 103.7% 
X4 2.63E−01 1.35E−05 8.88E−05 8.67E−05 15.6% 102.4% 
X5 −1.36E−01 3.61E−06 1.86E−04 1.86E−04 1.9% 100.0% 
X6 1.17E+00 2.29E−04 1.65E−04 1.66E−04 138.0% 99.4% 

Selected 2.29E−04 4.40E−04 4.39E−04 - - 
All 2.48E−04 4.54E−04 4.52E−04 - - 

Selected / All 92.3% 96.9% 97.1% - - 
Criterion (µ0) 4.13E−05 7.42E−05 7.54E−05 - - 

 

In Table 3, the bottom four rows show more information about each method.  The first and second rows are the 

sums of partial output variances of selected variables and all variables, respectively.  The third row shows the ratio 

of the first row to the second row.  The last row is µ0, which is the criterion used to select important variables.  In the 

variable screening method, the important variables (X4, X5 and X6) are determined to be larger than µ0 by hypothesis 

testing.  The sensitivity-variance method and the accurate method select important variables if the variable has 

partial output variance larger than µ0.  In the third row, the ratio for the variable screening method is larger than 85%, 

so γ is the initial value of 1.0, and equivalent µ0 is applied for other methods.  The sensitivity-variance method 

estimates that 92.3% of output variance is contained in X6 only.  This is a very poor estimation, as only 36.7% 

(=1.66E−04/4.52E−04) of output variance is captured in X6 according to the result of the accurate method.  On the 

other hand, the variable screening method estimates that 96.9% of output variance is contained in X4, X5 and X6, and 

this is very accurate compared to the 97.1% determined by the accurate method. 

However, the total and captured output variances in Table 3 are approximation using the partial output 

variances and the correlation term is not considered as explained in Section 3.1.  Having the analytical expression of 

the Hartman 6-D example in Eq. (25), true total output variance induced by multiple input random variables can be 

calculated as well.  The true total output variance is calculated using 1,000,000 realizations of all input random 

variables and the calculated value is 4.23E−04 as shown in Table 4.  Recalling the approximated result in Table 3, 

the variable screening method (4.54E−04) and the accurate method (4.52E−04) well approximate the true total 

output variance, whereas the sensitivity-variance method (2.48E−04) is not able to do so.  In Table 4, true captured 

output variance by the selected variables is also calculated.  To calculate the true captured output variance, the 

realizations, which are generated to calculate the true total output variances, are used.  Among them, the realizations 

of the screened-out variables are fixed at their mean values.  Then, the variance of Hartman 6-D is calculated using 

the modified realizations.  The true captured output variance in X6 is 1.66E−04, which is the same as the partial 

output variance of X6 found by the accurate method (see Table 3).  Hence, the sensitivity-variance method captures 

only 39.2% (1.66E−04/4.23E−04) of the true total output variance in its selection X6.  This will lead a reliability 
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problem not to estimate the probability of failure correctly.  By contrast, the captured output variance in X4, X5 and 

X6 is 4.10E−04, and this is 96.9% (4.10E−04/4.23E−04) of the total output variance.  This indicates that a reliability 

problem could be solved accurately utilizing X4, X5 and X6.  From this example, it can be seen that the variable 

screening method works as it is intended. 

 

Table 4.  True Total and Captured Output Variances of Hartman 6-D Example 

 Sensitivity 
-Variance 

Variable Screening 
& Accurate 

True Total Output 
Variance 

Selected Variables X6 (1-D) X4, X5, X6 (3-D) All (6-D) 
Captured Output Variance 1.66E−04 4.10E−04 4.23E−04 

Ratio to Total Out. Var. 39.2% 96.9% 100.0% 
 

 

 

4.1.2 Dixon-Price 12-D 

The second analytical example is the Dixon-Price 12-D, and again a constant term is added to its original 

function.  The analytical expression is shown as [38] 

 

  2 2 2 3
1 1

2
( ) ( 1) (2 ) 3.5575 10

m

i i
i

G X i X X −
−

=

= − + − − ×∑X  (29) 

where −10 ≤ xi ≤ 10, i = 1, 2, …, m and m = 12.  Input random variables shown in Table 5 are used for the test.  

They have five different marginal distribution types of normal, lognormal, Weibull, Gumbel, and Gamma.  X1 and 

X2 are correlated with the Frank copula and Kendall’s tau of 0.7.  Also, X5 and X6 are correlated with the FGM 

copula and Kendall’s tau of 0.2. 

 

Table 5.  Input Random Variables for Dixon-Price 12-D Example 

Random 
Variable 

Distribution 
Type Mean STDEV Correlation 

(Copula) 
X1 Normal 1.00 0.025 Frank 
X2 Normal 0.71 0.02 τ = 0.7 
X3 Lognormal 0.59 0.02 - 
X4 Lognormal 0.55 0.02 - 
X5 Weibull 0.52 0.02 FGM 
X6 Weibull 0.51 0.02 τ = 0.2 
X7 Gumbel 0.51 0.015 - 
X8 Gumbel 0.50 0.015 - 
X9 Normal 0.50 0.015 - 
X10 Normal 0.50 0.01 - 
X11 Gamma 0.50 0.01 - 
X12 Gamma 0.50 0.015 - 

 

The test result of the Dixon-Price 12-D example is shown in Table 6, and selected variables in each method are 

marked with bold font.  In this example, the value of γ is lowered to 0.7 to contain at least 85% of output variance in 
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the selected variables.  And it is shown that 86.6% of output variance is estimated using the variable screening 

method in Table 6.  Design sensitivities with respect to X9 ~ X12 are zero, and accordingly the partial output 

variances of X9 ~ X12 using the sensitivity-variance method are zero.  Hence, the sensitivity-variance method misses 

X9 and X12 even though they have large partial output variances.  Moreover, the other partial output variances using 

the sensitivity-variance method have poor accuracy compared to the accurate method (see the sixth column in Table 

6).  Hence, X2 and X3 are selected instead of X6 even though X6 actually has larger partial output variance than X2 and 

X3.  On the contrary, the variable screening method reasonably estimates partial output variances and correctly 

identifies important variables compared to the accurate method.  Therefore, it is confirmed that at least quadratic 

approximation is needed for the 1-D surrogate model to calculate partial output variances. 

 

 

 

 

 

 

 

 

 

 

Table 6.  Partial Output Variances of Dixon-Price 12-D Example 

Random 
Variable 

Design 
Sensitivity 

Sensitivity 
-Variance 

Variable 
Screening Accurate Sens.-Var. 

/Accurate 
Variable Scr. 

/Accurate 
X1 −3.28E−02 6.72E−07 7.95E−06 7.71E−06 8.7% 103.1% 
X2 1.76E−01 1.24E−05 1.41E−04 1.35E−04 9.2% 104.4% 
X3 −3.15E−01 3.98E−05 1.56E−04 1.62E−04 24.6% 96.3% 
X4 3.56E−01 5.07E−05 2.95E−04 2.81E−04 18.0% 105.0% 
X5 −1.94E−01 1.50E−05 4.98E−04 4.45E−04 3.4% 111.9% 
X6 −1.38E−01 7.61E−06 6.22E−04 5.51E−04 1.4% 112.9% 
X7 4.51E−01 4.58E−05 5.27E−04 5.57E−04 8.2% 94.6% 
X8 −3.20E−01 2.30E−05 3.10E−04 3.55E−04 6.5% 87.3% 
X9 0.00E+00 0.00E+00 2.20E−04 2.15E−04 0.0% 102.3% 
X10 0.00E+00 0.00E+00 5.31E−05 5.25E−05 0.0% 101.1% 
X11 0.00E+00 0.00E+00 6.42E−05 6.32E−05 0.0% 101.6% 
X12 0.00E+00 0.00E+00 2.45E−04 2.39E−04 0.0% 102.5% 

Selected 1.87E−04 2.72E−03 2.64E−03 - - 
All 1.95E−04 3.14E−03 3.06E−03 - - 

Selected / All 95.9% 86.6% 86.3% - - 
Criterion (µ0) 1.14E−05 1.68E−04 1.79E−04 - - 

 

Using Eq. (29), the true total and captured output variances of Dixon-Price 12-D example are calculated as 

shown in Table 7.  In Table 6, the variable screening (3.14E−03) and the accurate methods (3.06E−03) reasonably 

approximate the true total output variance (3.30E−03 in Table 7), while the sensitivity-variance method (1.95E−04) 

cannot.  In Table 7, the true captured output variance by selected variables using the sensitivity-variance method is 
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only 2.15E−03, which is 65.2% of the true total output variance.  By contrast, the output variance of 2.80E−03 is 

contained in X4 ~ X9 and X12, which indicates that 84.8% of the true total output variance is captured.  Hence, it is 

verified that the variable screening method correctly finds the important variables of the Dixon-Price 12-D example.  

Through analytical examples, it is shown that the partial output variance is a well-performing measure for variable 

screening purposes, and the proposed variable screening method successfully finds important variables as it is 

intended. 

 

Table 7.  True Total and Captured Output Variances of Dixon-Price 12-D Example 

 Sensitivity 
-Variance 

Variable Screening 
& Accurate 

True Total Output 
Variance 

Selected Variables X2 ~ X5, X7, X8 (6-D) X4 ~ X9, X12 (7-D) All (12-D) 
Captured Output Variance 2.15E−03 2.80E−03 3.30E−03 
Ratio to Total Out. Var. 65.2% 84.8% 100.0% 

 

4.2 Engineering Example 

A car noise, vibration, and harshness (NVH) and crash safety problem is considered to demonstrate the 

performance and efficiency of the proposed method.  The problem includes full frontal impact, 40% offset frontal 

impact, and NVH as constraints.  There are a total of 11 performance measures as shown in Table 8: nine safety 

measures and two NVH measures. 

Table 8.  Performance Measure Description 

Mode Function Value Feasibility decision 

Safety 

Full frontal 
impact 

G1 Chest G 

≤ Baselinei 

G2 Crush displacement 

40% offset 
impact 

G3 Brake pedal 
G4 Footrest 
G5 Left toepan 
G6 Center toepan 
G7 Right toepan 
G8 Left IP 
G9 Right IP 

NVH G10 Torsion mode 
G11 Vertical bending mode 

 

In this example, it is assumed that the only source of uncertainty is the thickness of the body plates.  The 44 

random variables shown in Table 9 are used to represent the thicknesses.  All random variables follow normal 

distribution and are statistically independent.  The design variable vector d is the mean vector of the 44 random 

variables, and there is no random parameter in this example.  Among those random variables, six random variables 

(X1 to X5 and X8) are common variables for both safety and NVH measures, two (X6 and X7) are variables only for 

safety, and the other 36 random variables are only for NVH measures.  

 

Table 9.  Input Random Variables 

RVs Dist. Type d STDV dL dU RVs Dist. Type d STDV dL dU 
X1 Normal 1.9 0.05 1.5 2.3 XN1 Normal 0.9 0.03 0.7 1.1 
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X2 Normal 1.91 0.05 1.5 2.3 XN2 Normal 1.1 0.03 0.8 1.4 
X3 Normal 2.51 0.06 2.0 3.0 XN3 Normal 1.55 0.05 1.2 1.9 
X4 Normal 2.4 0.06 1.9 2.9 XN4 Normal 0.9 0.03 0.7 1.1 
X5 Normal 2.55 0.06 2.0 3.1 XN5 Normal 1.5 0.03 1.2 1.8 
X6 Normal 2.25 0.06 1.8 2.7 XN6 Normal 1.2 0.03 0.9 1.5 
X7 Normal 2.25 0.06 1.8 2.7 XN7 Normal 1.1 0.03 0.8 1.4 
X8 Normal 1.5 0.03 1.2 1.8 XN8 Normal 1.52 0.05 1.2 1.9 
X10 Normal 1.28 0.03 0.9 1.6 XN9 Normal 0.8 0.03 0.6 1.0 
X11 Normal 1.4 0.03 1.0 1.8 XN10 Normal 0.8 0.03 0.6 1.0 
X12 Normal 1.1 0.03 0.8 1.4 XN11 Normal 1.2 0.03 0.9 1.5 
X13 Normal 2.2 0.06 1.7 2.7 XN12 Normal 0.75 0.03 0.6 0.9 
X14 Normal 1.5 0.03 1.2 1.8 XN13 Normal 0.75 0.03 0.6 0.9 
X15 Normal 1.25 0.03 0.9 1.6 XN14 Normal 0.75 0.03 0.6 0.9 
X16 Normal 2.5 0.06 2.0 3.0 XN15 Normal 1.0 0.03 0.8 1.2 
X17 Normal 2.0 0.05 1.5 2.5 XN16 Normal 1.14 0.03 0.9 1.4 
X18 Normal 1.4 0.03 1.1 1.7 XN17 Normal 1.2 0.03 0.9 1.5 
X20 Normal 1.22 0.03 0.9 1.5 XN18 Normal 1.4 0.03 1.1 1.7 
X23 Normal 0.75 0.03 0.6 1.0 XN19 Normal 1.2 0.03 0.9 1.5 
X24 Normal 1.9 0.05 1.5 2.3 XN20 Normal 1.4 0.03 1.1 1.7 
X25 Normal 0.65 0.03 0.5 0.8 XN21 Normal 2.13 0.06 1.7 2.6 
X26 Normal 0.85 0.03 0.6 1.1       
X27 Normal 0.85 0.03 0.6 1.1       

 

This problem requires three and a half hours for the impact dynamic analysis for crash safety and the modal 

analysis for NVH.  Thus, the actual analysis takes too much time to test the proposed method thoroughly.  Ford 

Motor Company provided full-dimensional global (considering the entire design domain) surrogate models so that 

we can use them to demonstrate the proposed method of variable screening.  The full-dimensional surrogate models 

may not be accurate, since 44-D is too high to create accurate surrogate models, especially for RBDO.  However, to 

test the proposed method of variable screening, the responses from the 44-D global surrogate models are treated as 

true responses in this paper.  The maximum dimension at which accurate surrogate models can be generated depends 

on the computational power and nonlinearity of a given problem.  In this paper, the DKG method [10] is used to 

generate an accurate surrogate model using the Iowa Reliability-Based Design Optimization (I-RBDO) code [39], 

and 18-D is targeted as the maximum degrees of freedom of DKG models.  The I-RBDO code is also used to carry 

out RBDO in this paper. 

 

4.2.1 Variable Screening 

At the baseline design d, which is the initial design as shown in Table 9, all 11 performance measures in Table 

8 are active.  That is, the value of every performance measure at the baseline design is the same as the baseline 

values, with Gi=Baselinei, i=1~11.  Therefore, the proposed variable screening method is performed for the problem 

at the baseline design.  Parameters ns, nr0, α, β, and γ are set as 50, 50, 0.05, 0.05, and 1.0, respectively.  Four 

hundred eighty-four (44 design variables × 11 performance measures) 1-D surrogate models with quadratic 

interpolation are generated using 89 DoE samples (i.e., simulation samples).  It is noted that 11 values of 

performance measures are obtained from one analysis.  The results of partial output variances iv  are listed in Table 

10 and Table 11 for every performance measure.  The partial output variances of the important variables for each 

performance measure are marked with bold font.  It is noted that only partial output variances of X1~X8 are listed in 

Table 10 since G1~G9 are only a function of X1~X8 as the variable screening method identified the partial output 
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variances to be zero for other random variables.  In Table 11, X6 and X7 have zero partial output variances as G10 and 

G11 are not functions of X6 and X7.  In the last three rows of Table 10 and Table 11, the sums of partial output 

variances of selected variables, the sums of all partial output variances, and their ratios are listed.  As explained 

before, this is the estimated ratio between the captured output variance in selected variables to the total output 

variance.  It is estimated that a minimum of 90.3% of the total output variance is captured in the selected variables.  

In total, 14 random variables: X1, X2, X3, X4, X5, X6, X7, X8, X10, X20, X23, X25, X26, and XN1, are selected as important 

variables.  Accordingly, 14 design variables, which are the means of the selected random variables, are considered 

as important design variables. 

 

Table 10.  Partial Output Variances iv  (G1~G9)  
RVs G1 G2 G3 G4 G5 G6 G7 G8 G9 
X1 2.37E−02 3.75E+00 4.06E+01 1.11E+01 1.94E+00 1.73E+00 6.21E−01 3.45E−01 5.75E−01 
X2 1.88E−02 1.01E+00 3.55E−01 1.86E+00 2.07E+00 2.06E+00 1.09E+00 4.03E−01 2.69E−01 
X3 5.08E−05 1.76E−02 1.05E+01 9.74E+00 5.95E+00 4.38E+00 2.00E+00 2.37E−01 2.24E−02 
X4 1.66E−04 9.27E−02 3.91E+00 1.79E+00 2.65E−01 6.65E−02 1.73E−03 4.78E−03 9.65E−03 
X5 1.12E−04 1.37E−04 2.74E+00 2.23E+00 4.90E−01 9.11E−01 9.30E−01 1.79E−01 7.94E−02 
X6 4.58E−05 2.77E+00 1.64E−01 8.14E−02 8.18E−01 1.60E−01 1.70E−01 3.95E−02 3.27E−02 
X7 2.32E−03 1.34E−01 1.91E−01 1.50E−01 2.75E+00 1.71E+00 5.66E−01 1.10E−01 2.77E−01 
X8 1.23E−03 6.28E−02 4.39E−02 3.02E−01 5.35E−01 5.45E−01 3.27E−01 6.25E−02 4.87E−02 

Selected 4.61E−02 7.53E+00 5.78E+01 2.67E+01 1.46E+01 1.13E+01 5.70E+00 1.38E+00 1.28E+00 
All 4.64E−02 7.84E+00 5.85E+01 2.73E+01 1.48E+01 1.16E+01 5.71E+00 1.38E+00 1.31E+00 

Selec./All 99.4% 96.0% 98.8% 97.8% 98.6% 97.4% 99.8% 100.0% 97.7% 
Table 11.  Partial Output Variances iv  (G10 and G11) 

RVs G10 G11 RVs G10 G11 RVs G10 G11 
X1 1.30E−03 1.48E−03 X17 4.24E−07 2.01E−04 XN8 2.06E−05 5.45E−05 
X2 4.39E−05 3.44E−05 X18 9.71E−06 3.33E−05 XN9 1.61E−06 1.89E−05 
X3 8.95E−04 3.05E−04 X20 2.21E−03 1.84E−03 XN10 5.11E−06 1.83E−06 
X4 8.74E−05 2.63E−05 X23 2.67E−03 1.13E−03 XN11 1.56E−07 1.12E−07 
X5 3.06E−04 4.23E−05 X24 2.35E−05 6.89E−05 XN12 1.83E−06 3.10E−05 
X6 0 0 X25 4.85E−04 7.31E−03 XN13 1.69E−07 8.19E−07 
X7 0 0 X26 4.59E−03 1.06E−02 XN14 9.08E−08 3.75E−05 
X8 5.56E−04 1.89E−04 X27 3.43E−05 3.76E−04 XN15 1.84E−06 1.66E−05 
X10 5.49E−04 3.87E−04 XN1 9.33E−05 6.38E−03 XN16 4.35E−08 2.88E−08 
X11 3.32E−05 2.05E−04 XN2 4.49E−07 7.48E−05 XN17 3.24E−07 1.84E−06 
X12 9.35E−05 3.98E−04 XN3 9.59E−08 2.00E−05 XN18 1.04E−07 1.18E−07 
X13 7.23E−06 3.82E−04 XN4 6.04E−08 8.36E−05 XN19 3.03E−08 3.37E−07 
X14 5.76E−07 1.17E−05 XN5 2.60E−07 1.42E−07 XN20 2.06E−07 2.98E−06 
X15 1.16E−07 1.13E−05 XN6 1.29E−07 2.22E−07 XN21 2.44E−07 9.41E−06 
X16 9.14E−08 1.63E−06 XN7 9.46E−08 7.94E−06    

Selected 1.33E−02 2.87E−02 
All 1.40E−02 3.18E−02 

Selec./All 95.0% 90.3% 
 

Sensitivity-variance introduced in Section 4.1 is applied to performance measure G5, and the result is shown in 

Table 12.  Selected random variables for G5 are X1~X3 and X5~X8 out of X1~X8.  Among X1~X8, variables X3~X7 have 

the largest standard deviation of 0.06.  However, X4 is not selected among them because it has small design 

sensitivity compared to others.  Here, the design sensitivities are calculated at the design point using the forward 
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finite difference method (FDM) with 0.1% perturbation.  By contrast, X8 is selected as an important variable even 

though it has smallest standard deviation of 0.03.  Again, this is because it has relatively large sensitivity and 

induces large output variances. 

 

Table 12.  Result of Sensitivity-Variance Method in G5 

RVs 
STDEV 
(

iXσ ) 
Design Sensitivity 

( iα ) 
Partial Output Variance 

( 2 2
ii Xα σ ) 

X1 0.05 27.9105 1.95E+00 
X2 0.05 29.2723 2.14E+00 
X3 0.06 −40.7490 5.98E+00 
X4 0.06 8.7917 2.78E−01 
X5 0.06 −11.6078 4.85E−01 
X6 0.06 14.1289 7.19E−01 
X7 0.06 27.8533 2.79E+00 
X8 0.03 24.3000 5.31E−01 

 

 

Interestingly, the partial output variances using the sensitivity-variance method of G5 shown in Table 12 are 

close to the result shown in the sixth column of Table 10.  In fact, the same variables as those in the variable 

screening method will be selected by using the sensitivity-variance method throughout all 11 constraints.  However, 

the sensitivity-variance method has the possibility of choosing undesirable variables as shown in the analytical 

examples in Section 4.1.  In Fig. 3, the shape of G5 when each Xi is random is shown.  It is easily anticipated that the 

design sensitivity of G5 with respect to Xi could be very small or even zero so that the sensitivity-variance method 

may provide inaccurate partial output variance; this can be prevented if the variable screening method is used. 

 

 

Figure 3.  Shape of G5 when Each Xi is Random 
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The sensitivity-variance method requires accurate design sensitivity.  In practical engineering problems, design 

sensitivity might be calculated using FDM.  To use FDM, a user determines perturbation method (forward, 

backward or central) and perturbation size, and the result of the sensitivity-variance could depend on the user’s 

choice.  In Table 13, partial output variance of X2 in G6 at DDO optimum design with various methods is shown.  It 

can be seen that X2 is not selected as an important variable when design sensitivity is calculated using forward FDM 

with 1% perturbation.  The partial output variance is only 56.6% of that found using the accurate method with 

100,000 realizations of X2.  To obtain more accurate design sensitivity with forward FDM, small perturbation is 

required as shown in Table 13.  However, small perturbation does not always provide accurate design sensitivity, 

and determining appropriate perturbation size would require extra DoE samples.  Central FDM provides more 

accurate design sensitivity, and it is insensitive to perturbation size.  However, the partial output variance with 

central FDM sensitivity shows at most 76.7% accuracy compared to the accurate method.  It is noted that the 

variable screening method would not require perturbation size determination.  Moreover, a user can perform the 

proposed variable screening method using only one more DoE sample than the sensitivity-variance method with 

central FDM. 

 

 

 

 

 

Table 13.  Partial Output Variance of X2 in G6 at DDO Optimum Design 

Method Perturbation Selection Design 
Sensitivity 

Partial Output 
Variance Accuracy 

Sensitivity-
Variance 

Forward, 1% No −5.83E+00 8.49E−02 56.6% 
Forward, 0.5% Yes −6.30E+00 9.94E−02 66.3% 
Forward, 0.1% Yes −6.68E+00 1.12E−01 74.7% 

Central, 1% Yes −6.79E+00 1.15E−01 76.7% 
Central, 0.5% Yes −6.78E+00 1.15E−01 76.7% 
Central, 0.1% Yes −6.78E+00 1.15E−01 76.7% 

Variable 
Screening - Yes - 1.51E−01 100.7% 

Accurate - Yes - 1.50E−01 100.0% 
 

Since we have 44-D global surrogate models for this example, GSA can be carried out to verify effectiveness of 

the proposed method.  Among various GSA methods, the global sensitivity index method, which can identify the 

global effect of the variables of interest on the output, is used here.  The main strength of the global sensitivity index 

method is that it can find interactions between all variables (not statistical correlation between random variables).  

All random variables are assumed to follow uniform distribution in their corresponding design domain of dL and dU, 

and global sensitivity indices are calculated using the Monte Carlo simulation (MCS) method with 1 million MCS 
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samples [31].  There are many global sensitivity indices in this 44-D problem; the total sensitivity index tot
iS  is used 

for variable ranking and screening.  The total sensitivity index tot
iS  is a “total influence of ith random variable” to the 

output.  That is, it indicates the main effect plus interactions of the ith random variable with other random variables 

[22].  The results are listed in Table 14 and Table 15.  To identify important random variables, the mean value of 
tot
iS  is calculated for each constraint and the random variable, which yields larger tot

iS than the mean value, is 

selected as an important variable and marked in bold font in these tables.  In Table 14, only tot
iS for X1 ~ X8 are listed 

as tot
iS for other variables are zero.  Also, the sum of tot

iS for the selected random variables, the sum of tot
iS for all 

random variables, and their ratios are listed in the last three rows, respectively. 

 

Table 14.  Global Sensitivity Indices tot
iS (G1~G9) 

RVs G1 G2 G3 G4 G5 G6 G7 G8 G9 
X1 4.16E−01 3.84E−01 5.23E−01 2.68E−01 1.74E−01 1.89E−01 2.07E−01 2.56E−01 4.35E−01 
X2 3.46E−01 1.18E−01 1.04E−01 1.88E−01 1.98E−01 2.09E−01 1.66E−01 2.62E−01 2.07E−01 
X3 7.83E−03 5.75E−03 3.28E−01 5.07E−01 5.18E−01 4.97E−01 4.92E−01 2.69E−01 4.96E−02 
X4 1.89E−02 2.23E−02 7.92E−02 1.34E−01 1.25E−01 1.38E−01 1.42E−01 7.38E−02 2.87E−02 
X5 7.50E−03 −7.22E−04 1.40E−01 2.10E−01 1.53E−01 1.76E−01 1.78E−01 1.90E−01 9.10E−02 
X6 5.65E−02 2.67E−01 2.08E−02 5.01E−02 1.11E−01 1.15E−01 1.67E−01 5.13E−02 2.74E−02 
X7 8.13E−02 5.65E−03 1.77E−02 4.52E−02 1.59E−01 1.60E−01 1.76E−01 6.73E−02 1.73E−01 
X8 3.23E−02 2.06E−02 4.02E−03 2.33E−02 3.82E−02 4.09E−02 5.21E−02 7.13E−02 6.14E−02 

Selected  9.32E−01 8.12E−01 1.17E+00 1.40E+00 1.48E+00 1.52E+00 1.58E+00 1.24E+00 1.07E+00 
All 9.66E−01 8.23E−01 1.22E+00 1.43E+00 1.48E+00 1.52E+00 1.58E+00 1.24E+00 1.07E+00 

Selec./All 96.5% 98.7% 95.9% 97.9% 100.0% 100.0% 100.0% 100.0% 100.0% 
 

Table 15.  Global Sensitivity Indices tot
iS  (G10 and G11) 

RVs G10 G11 RVs G10 G11 RVs G10 G11 
X1 1.05E−01 7.09E−02 X17 3.30E−04 1.46E−02 XN8 −8.85E−04 −1.34E−03 
X2 1.01E−03 2.38E−03 X18 −4.77E−04 −2.50E−04 XN9 8.54E−04 −1.71E−03 
X3 5.72E−02 1.01E−02 X20 2.07E−01 9.17E−02 XN10 1.28E−04 −1.07E−04 
X4 8.66E−03 2.65E−03 X23 1.34E−01 3.57E−02 XN11 −2.72E−04 −2.85E−05 
X5 3.29E−02 5.69E−03 X24 −1.60E−03 −8.39E−04 XN12 −1.51E−04 −1.94E−04 
X6 0 0 X25 1.12E−02 9.79E−02 XN13 −5.24E−05 1.59E−04 
X7 0 0 X26 2.96E−01 3.80E−01 XN14 −3.88E−05 −6.91E−05 
X8 4.73E−02 5.89E−03 X27 6.04E−03 2.38E−02 XN15 1.20E−04 4.59E−04 
X10 5.98E−02 1.99E−02 XN1 5.62E−03 1.65E−01 XN16 8.87E−05 2.85E−04 
X11 3.86E−03 1.67E−02 XN2 −1.11E−04 2.31E−03 XN17 −6.09E−05 −3.61E−04 
X12 1.34E−02 2.88E−02 XN3 1.13E−04 1.33E−03 XN18 −1.12E−05 −9.18E−05 
X13 3.20E−04 1.50E−02 XN4 1.54E−04 −2.50E−03 XN19 1.10E−04 1.23E−03 
X14 2.24E−04 −4.65E−04 XN5 −2.96E−04 9.10E−04 XN20 −1.67E−04 −8.38E−04 
X15 −1.33E−04 1.36E−03 XN6 2.34E−04 −2.32E−05 XN21 6.77E−05 −6.44E−04 
X16 −1.94E−04 2.42E−03 XN7 −1.61E−05 −3.27E−04    

Selected 9.39E−01 8.94E−01 
All 9.87E−01 9.87E−01 

Selec./All 95.1% 90.6% 
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Using the global sensitivity index method, 16 random variables are selected as shown in Table 16.  Those 16 

random variables include all 14 random variables selected using the proposed method as shown in Table 16.  

Moreover, if we set a limit of 14 random variables to be selected, X12 and X27 will not be selected as they have least 
tot
iS  among the selected variables for G11 as shown in Table 15.  Thus, the 14 random variables selected by both 

methods are identical.  The ratio between the sensitivity indices of selected variables and all variables has no 

physical meaning.  However, it is an indicator that shows how much variance is captured by the selected random 

variables.  The results are quite similar to those of the proposed method as shown in Tables 10 and 11 and Tables 14 

and 15, respectively.  Hence, it is demonstrated that the proposed variable screening method is quite effective even 

though it does not require global surrogate models unlike the global sensitivity index method. 

 

Table 16.  Selected Random Variables 

Method Selected Variables 

Proposed Method X1, X2, X3, X4, X5, X6, X7, X8, X10, X20, 
X23, X25, X26, XN1 (14 RVs) 

Global Sensitivity Index X1, X2, X3, X4, X5, X6, X7, X8, X10, X12, 
X20, X23, X25, X26, X27, XN1 (16 RVs) 

 

 

4.2.2 Reliability-based Design Optimization 

For this example, RBDO is formulated as 

 minimize Weight (d) 

 subject to 
[ ]( ) Baseline 10%, 1, ,11

, , and
i i

L U NDV NRV

P G i> ≤ =

≤ ≤ ∈ ∈

X

d d d d X



 
 (30) 

For a comparison study, we considered three cases: (1) a set of 14 random variables are selected based on 

experience without using the proposed variable screening method, (2) another set of 14 random variables are 

selected using the proposed variable screening method as shown in Section 4.2.1, and (3) in addition to the 14 

random variables selected in case 2, four more random variables are selected using the cost function sensitivity for a 

total of 18 design variables to test the effectiveness of the proposed variable screening method and accuracy of the I-

RBDO code.  The selected design variables are listed in Table 17. 

 

Table 17.  Selected Random Variables for RBDO 

Cases Common Selection Different Selection 
(1) Based on Experience 

X1, X2, X3, X4, X5, X6, X7, X8, 
X20, X25, XN1 (11 RVs) 

XN9, XN10, XN11 
(2) Variable Screening X10, X23, X26 
(3) Variable Screening 

+ Cost Function 
X10, X23, X26 

+ XN4, XN9, XN10, XN11 
 

Because the cost function, which is weight in this problem, is a function of design variables d, not random 

variables X, the function is deterministic.  Therefore, the design sensitivity of the cost function with respect to the 

design variable is calculated by FDM, and the four design variables (and related random variables XN4, XN9, XN10, 
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and XN11) that show the largest sensitivity among the unselected design variables are chosen.  Then, RBDO is 

carried out with three sets of selected random variables.  The optimum design results are summarized in Table 18.  

The bold font indicates chosen design variables, and others are fixed at the baseline design value.  Also, probabilities 

of failure, cost function values, and design iteration details are listed in Table 19.  All RBDOs are carried out using 

I-RBDO code with 500,000 MCS samples [10].  For the three cases, I-RBDO generates DKG surrogate models, 

using the sample responses obtained from the 44-D global surrogate models, which are treated as true responses, for 

RBDO.  Since I-RBDO is able to carry out RBDO using the surrogate models generated by other methods (i.e., the 

surrogate models generated by Ford in this example) without having information on how the surrogate models are 

generated, the full-dimensional RBDO is performed as well using the 44-D surrogate models.  The 44-D RBDO 

result is treated as the true RBDO optimum and used for the purpose of validation of RBDO results obtained for the 

three reduced-dimensional cases. 

Indeed, the optimum design values for d1~d8 are very close to the full-dimensional 44-D case, as shown in 

Table 18, which shows that the DKG surrogate models generated in the I-RBDO code are accurate.  In the three 

cases, the random variables X1~X8 are selected because they have large partial output variance for performance 

measures G1~G9.  This means that they contribute a large portion of the output variance.  Hence, finding optimum 

values for them is the most effective way to reduce the probabilities of failure of G1~G9.  Similarly, d22 

(corresponding to X26) moves to the upper bound of 1.1 when it is selected because it has the largest partial output 

variances of G10 and G11.  The design variables d27, d32, d33, and d34 (corresponding to XN4, XN9, XN10, and XN11), 

which are selected by the sensitivity of the cost function, move to their lower bounds of 0.7, 0.6, 0.6, and 0.9, 

respectively, to reduce the cost function without significantly affecting the reliability of the optimum design.  On the 

other hand, even though some design variables are selected due to the partial output variances of some constraints, 

they move to their lower bounds.  For example, d24 (corresponding to XN1) moves to the lower bound of 0.7 because 

it has the largest sensitivity for the cost function, even though it has the third-largest partial output variance of G11.  

That is, via the trade-offs in the optimization process, it is moved to the lower bound to minimize the cost function 

rather than to reduce the probability of failure. 

In Table 19, the number of black box calls is listed.  I-RBDO can deal with multiple samples simultaneously to 

create a surrogate model to utilize parallel computing.  That is, one black-box call requests computational 

simulations at a number of sampling points; thus, the black box call indicates the clock time required for analyses 

for RBDO.  Therefore, the number of black box calls represents actual computational cost more realistically than the 

number of CAEs when parallel computing is used.  In this example, five samples are added to the DKG model at a 

time; therefore, the total number of CAEs is roughly five times the number of black box calls. 

To verify once again that the surrogate model generated by DKG using I-RBDO is accurate, the same three 

cases are performed using I-RBDO by using responses from 44-D global surrogate model directly while fixing 

screened-out variables at their baseline design points.  As shown in Table 20, the optimums found using DKG and 

44-D global surrogate models are very close to each other.  Hence, it is confirmed that DKG in I-RBDO generated 

an accurate surrogate model.  Moreover, it is also verified that RBDO can be conducted based on an accurate 

surrogate model even for a moderately large-dimensional problem (14 and 18 dimensions).       



26 

For the three reduced-dimensional cases, the probabilities of failure are calculated using only selected variables 

as random variables, since the other design variables are treated as deterministic as explained in Section 2.2 with 

fixed values at the baseline design.  As shown in Table 19, it is noted that, in all cases, the target design constraints 

of 10% probability failure are closely satisfied as expected at these optimum designs since the RBDO considers only 

the selected variables as random variables.  On the other hand, to check correct reliabilities, reliability analyses are 

carried out at these optimum designs treating all variables as random for the 44-D surrogate models and MCS with 1 

million samples, as shown in Table 21.  It is noted that probabilities of failure of full-dimensional optimum in Table 

19 and Table 21 are different even though the discrepancy is negligible.  Theoretically, they should be the same; 

however, they are not equal because different numbers of MCS samples (500,000 and 1 million) are used and MCS 

error is induced.  At the baseline design, all constraints have approximately 50% of probability of failure, and this is 

reasonable because all constraints are active at the baseline design.  However, they are not exactly 50% because the 

constraint functions are nonlinear.  Probabilistic constraint results corresponding to G1~G9 are active or feasible in 

both Table 19 and Table 21.  Due to the fact that G1 to G9 are functions of X1 to X8, and all of them are selected as 

important variables, the RBDO result with reduced-dimension and the reliability analysis result with full-dimension 

are very close to each other, considering MCS errors.  The constraint G10 shows inactive results regardless of which 

selection design variable set is used. 

All probabilities of failure for the constraint G11 in Table 19 satisfy the target probability of failure 10%, which 

makes it obvious that these are the reliability analyses results of reduced-dimensional problems.  However, full-

dimensional reliability analyses at optimum designs show quite different values as shown in Table 21.  Selection 

based on experience shows a 17.70% probability of failure, which violates the target reliability significantly.  The 

variables selected based on experience contain only 55.40% of the total output variance of G11.  Hence, it cannot 

find any safe design once dimension is reduced.  On the other hand, the probabilities of failure for the proposed 

variable screening method and also the one considering cost function are close to the target probability of failure.  

The selected variables contain 93.55% and 93.88% of the total output variance of G11 for Case 2 and Case 3, 

respectively.  Hence it can find a correct optimum even with reduced dimension. 

 

Table 18.  RBDO Optimum Design 

Design 
Variables 

Corresponding 
RVs 

Baseline 
Design 

Based on 
Experience 

Variable 
Screening 

Variable Screening  
+ Cost Function 

Full 
Dimension 

d1 X1 1.9 1.8343 1.8366 1.8336 1.8491 
d2 X2 1.91 2.1810 2.1804 2.1806 2.1692 
d3 X3 2.51 2.8528 2.8561 2.8540 2.8803 
d4 X4 2.4 1.9817 1.9810 1.9856 1.9507 
d5 X5 2.55 2.7195 2.7228 2.7261 2.7296 
d6 X6 2.25 2.2543 2.2497 2.2558 2.2408 
d7 X7 2.25 2.3199 2.3185 2.3207 2.3284 
d8 X8 1.5 1.7904 1.7966 1.7860 1.8 
d9 X10 1.28 1.28 0.9 0.9 1.5336 
d10 X11 1.4 1.4 1.4 1.4 1.0038 
d11 X12 1.1 1.1 1.1 1.1 0.9868 
d12 X13 2.2 2.2 2.2 2.2 1.7006 
d13 X14 1.5 1.5 1.5 1.5 1.2 
d14 X15 1.25 1.25 1.25 1.25 0.9 
d15 X16 2.5 2.5 2.5 2.5 2.0 
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d16 X17 2.0 2.0 2.0 2.0 1.5033 
d17 X18 1.4 1.4 1.4 1.4 1.1 
d18 X20 1.22 0.9 0.9 0.9 0.9 
d19 X23 0.75 0.75 0.6 0.6 0.6 
d20 X24 1.9 1.9 1.9 1.9 1.5 
d21 X25 0.65 0.6897 0.5429 0.5871 0.8 
d22 X26 0.85 0.85 1.1 1.1 1.1 
d23 X27 0.85 0.85 0.85 0.85 1.1 
d24 XN1 0.9 0.7 0.7 0.7 0.7 
d25 XN2 1.1 1.1 1.1 1.1 0.8 
d26 XN3 1.55 1.55 1.55 1.55 1.2039 
d27 XN4 0.9 0.9 0.9 0.7 0.7 
d28 XN5 1.5 1.5 1.5 1.5 1.2 
d29 XN6 1.2 1.2 1.2 1.2 0.9 
d30 XN7 1.1 1.1 1.1 1.1 0.8 
d31 XN8 1.52 1.52 1.52 1.52 1.6925 
d32 XN9 0.8 0.6 0.8 0.6 0.6 
d33 XN10 0.8 0.6 0.8 0.6 0.6 
d34 XN11 1.2 0.9 1.2 0.9 0.9 
d35 XN12 0.75 0.75 0.75 0.75 0.6 
d36 XN13 0.75 0.75 0.75 0.75 0.6 
d37 XN14 0.75 0.75 0.75 0.75 0.6 
d38 XN15 1.0 1.0 1.0 1.0 0.8 
d39 XN16 1.14 1.14 1.14 1.14 0.9083 
d40 XN17 1.2 1.2 1.2 1.2 0.9 
d41 XN18 1.4 1.4 1.4 1.4 1.1 
d42 XN19 1.2 1.2 1.2 1.2 0.9 
d43 XN20 1.4 1.4 1.4 1.4 1.1 
d44 XN21 2.13 2.13 2.13 2.13 1.7 
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Table 19.  Cost, Probabilities of Failure at RBDO Optimum Design, and Optimization Details 

Performance 
Measure 

Based on 
Experience 

Variable 
Screening 

Variable Screening 
+ Cost Function 

Full 
Dimension 

Cost 249.10 259.83 244.17 225.68 
G1 10.06% 9.94% 9.96% 9.96% 
G2 10.03% 10.11% 10.04% 9.99% 
G3 0.00% 0.00% 0.00% 0.00% 
G4 0.11% 0.11% 0.09% 0.10% 
G5 1.96% 1.95% 2.04% 1.91% 
G6 9.95% 10.01% 10.02% 9.99% 
G7 9.89% 9.93% 9.95% 10.01% 
G8 10.03% 9.98% 9.91% 9.07% 
G9 10.04% 9.99% 9.87% 9.92% 
G10 0.00% 0.00% 0.00% 0.00% 
G11 10.02% 9.97% 9.93% 10.02% 

No. of Design 
Iter. 20 30 20 21 

No. of CAEs 2,666 4,358 3,306 - 
No. of Black 

Box Calls 473 727 573 - 

 
 

Table 20.  RBDO Optimum Design with I-RBDO and True Model 

Design 
Variables 

Corresponding 
RVs 

Based on Experience Variable Screening Var. Screen. + Cost Fn. 
I-RBDO 44-D Surrogate I-RBDO 44-D Surrogate I-RBDO 44-D Surrogate 

d1 X1 1.8343 1.8371 1.8366 1.8359 1.8336 1.8425 
d2 X2 2.1810 2.1799 2.1804 2.1807 2.1806 2.1771 
d3 X3 2.8528 2.8578 2.8561 2.8576 2.8540 2.8654 
d4 X4 1.9817 1.9807 1.9810 1.9851 1.9856 1.9525 
d5 X5 2.7195 2.7222 2.7228 2.7233 2.7261 2.7209 
d6 X6 2.2543 2.2488 2.2497 2.2501 2.2558 2.2464 
d7 X7 2.3199 2.3173 2.3185 2.3169 2.3207 2.3265 
d8 X8 1.7904 1.8 1.7966 1.7985 1.786 1.8 
d9 X10 - - 0.9 0.9 0.9 0.9 
d18 X20 0.9 0.9 0.9 0.9 0.9 0.9 
d19 X23 - - 0.6 0.6 0.6 0.6 
d21 X25 0.6897 0.6875 0.5429 0.5424 0.5871 0.5826 
d22 X26 - - 1.1 1.1 1.1 1.1 
d24 XN1 0.7 0.7 0.7 0.7 0.7 0.7 
d27 XN4 - - - - 0.7 0.7 
d32 XN9 0.6 0.6 - - 0.6 0.6 
d33 XN10 0.6 0.6 - - 0.6 0.6 
d34 XN11 0.9 0.9 - - 0.9 0.9 
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Table 21.  Reliability Analysis Result Using Full-Dimensional Surrogate Model 

Performance 
Measure 

Baseline 
Design 

Based on 
Experience 

Variable 
Screening 

Variable Screening 
+ Cost Function 

Full 
Dimension 

Cost 269.47 249.10 259.83 244.17 225.68 
G1 48.25% 10.06% 9.96% 10.00% 10.05% 
G2 51.34% 10.02% 10.11% 10.04% 10.09% 
G3 54.14% 0.00% 0.00% 0.00% 0.00% 
G4 55.57% 0.10% 0.12% 0.09% 0.12% 
G5 58.94% 1.96% 1.93% 1.98% 1.91% 
G6 59.70% 10.08% 10.05% 10.05% 10.00% 
G7 59.86% 10.20% 10.04% 9.91% 10.06% 
G8 53.23% 10.02% 10.03% 9.97% 9.14% 
G9 51.15% 10.02% 9.96% 9.96% 9.96% 
G10 49.10% 0.00% 0.00% 0.00% 0.00% 
G11 52.46% 17.70% 11.23% 11.17% 10.05% 

 

 

5. Conclusion 

A new efficient and effective variable screening method for RBDO is proposed in this paper.  For the proposed 

methods, the output variance is used as a measure that can identify important design variables.  Thus, a partial 

output variance based on the univariate DRM is proposed to approximate the output variance efficiently and to 

identify the design variables that affect output variance more significantly than others.  The univariate DRM and 

partial output variance only require multiple 1-D surrogate models, which is much more efficient than the full-

dimensional surrogate models.  Hence, the proposed method has great merit in efficiency as well as effectiveness.  

To reduce computational time and maintain a user-specified statistical error level, hypothesis testing is used in the 

variable screening process.  Also, a required minimum number of samples for calculating the correct output variance 

is proposed using the user-specified error level.  In addition, the quadratic interpolation method is tailored to be 

applied to efficient partial output variance calculation. 

Two analytical examples and a 44-D industrial example are used to verify the performance of the proposed 

variable screening method.  Through the analytical examples, it is shown that at least quadratic approximation is 

required for the 1-D surrogate model and that partial output variance is a good measure that successfully identifies 

important variables.  In the industrial example, 14 design variables out of 44 are selected by considering the output 

variances of 11 constraints.  For comparison, another 14 design variables selected based on experience are used.  In 

addition, 18 design variables are selected by adding four design variables, which affect the objective function 

significantly while not affecting the output variances much, to the 14 design variables previously selected with the 

proposed method.  The selection based on experience shows a 7.6% reduced cost value, whereas the target 

probability of failure is violated by 77%.  However, selection by the proposed method shows only a 12.3% 

disagreement of target value and a 3.6% reduced cost value.  Moreover, the selection of 18 design variables shows 

11.7% target disagreement as well as 9.4% reduced cost value.  Therefore, the performance of the proposed variable 

screening method is verified. 
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